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Abstract

For every ADE Dynkin diagram, we give a realization, in terms of usual fusion algebras (graph
algebras), of the algebra of quantum symmetries described by the associated Ocneanu graph. We
give explicitly, in each case, the list of the corresponding twisted partition functions. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

For each ADE Dynkin diagramG, we consider the corresponding Ocneanu graph Oc(G),
as given by Ocneanu [16], and build explicitly an algebra (the algebra of quantum symme-
tries of the given Dynkin diagram) whose multiplication table is encoded by this Ocneanu
graph. Using this algebra structure, we obtain explicitly, and easily, the expression of all
the twisted partition functions that one may associate with the given Dynkin diagram (one
for each vertex of its corresponding Ocneanu graph).
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Our first purpose is not to deduce the graph Oc(G) fromG, since that was already done
by Ocneanu [16] (actually the details have never been made available in printed form),
but to give a simple presentation of the corresponding algebra of quantum symmetries.
In each case, this algebra will be given in terms of a quotient of the tensor square of the
graph algebra (fusion algebra) associated with some particular ADE Dynkin diagram. These
algebrasHOc(G) are commutative in almost all cases (forD2n they involve 2× 2 matrices).

Our other purpose is to use this structure to obtain explicitly the corresponding “toric
matrices” (terminology taken from [6]) and the corresponding “twisted partition functions”
(terminology taken from [21,22]).

The torus structure of all ADE models has been worked out by Ocneanu himself several
years ago (unpublished). Explicit expressions for the eight toric matrices of dimension 6×6
of theD4 model can be found in [21] (where they are interpreted physically in terms of the
3-state Potts model) and for the twelve toric matrices of dimension 11×11 of theE6 model
in [6] (where one can also find a general method of calculation for these quantities). One of
our purposes is to give explicit results, in particular for all exceptional cases, by following
the method explained in this last reference [6] and summarized in Section 2. Starting from
conformal field theory (CFT), another general method for obtaining the structure of these
twisted partition functions has been described in the subsequent article [22] which contains
closed formulae; we do not use this formalism. Actually, the constructions performed in the
sequel avoid, deliberately, the use of CFT concepts.

Again, we insist upon the fact that we take for granted the data given by the Ocneanu
graphs themselves; otherwise, we should either have to diagonalize the convolution product
of the quantum Racah–Wigner bi-algebra associated with the given ADE diagram, or to
solve the problem of finding what are the irreducible elements for the set of “connections”
that one can define on a pair of graphs (system of generalized Boltzman weights, see also
[24]). This was done by Ocneanu himself. The present paper can be read independently of
[6] since all the necessary information is gathered in Section 2.

As already stressed, our own presentation, which follows [6], uses neither the language
nor the techniques of CFT, but the results themselves can be interpreted in terms of CFT.
For instance the toric matrices lead to quantities that can be interpreted in terms of partition
functions for boundary conformal field theories in presence of defect lines. The reader
interested in those CFT aspects should look at the article [22] which contains many results
of independent interest and is probably the most complete published work on this subject,
in relation with conformal field theories.

For every ADE example, the particular toric matrix associated with the “unit vertex” of the
corresponding Ocneanu graph is the usual modular invariant for the associated ADE model
(in the classification of [4]), i.e., the corresponding sesquilinear form gives the usual modular
invariant partition function. The other partition functions (the non-trivially “twisted” ones),
those associated with the other points of the Ocneanu graph are not modular invariant.

It is unfortunately almost impossible to provide a unified (or uniform) treatment for all
ADE diagrams; indeed, all of them are “special”, in one way or another. TheAn are a bit too
“simple” (many interesting constructions just coincide in that case), theD2n are the only
ones to give rise to a non-abelian algebra of quantum symmetries, theE7 does not define
a positive integral graph algebra and theD2n+1 do not define any integral graph algebra at
all; “only” E6 andE8 lead, somehow, to a similar treatment.
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The structure of the present paper is as follows: after a first section devoted to a general
overview of the theory, we examine separately all types of ADE Dynkin diagrams. In each
case, i.e., in each section, after having presented the graph algebra associated with the chosen
diagram (when it exists), we describe explicitly the structure of an associative algebra that we
can associate with its corresponding Ocneanu graph, express it in terms of (usual) graph al-
gebras and deduce, from this algebra structure, the corresponding toric matrices. In order not
to clutter the paper with sparse matrices of big size, we list only the sesquilinear forms—i.e.,
the twisted partition functions—associated with these toric matrices. For pedagogical rea-
sons we prefer to perform this analysis in the following order:An,E6,E8,D2n,D2n+1,E7.

2. Summary of the algebraic constructions

2.1. Foreword

To every pair of ADE Dynkin diagrams with the same Coxeter number, one may associate
(Ocneanu) an algebra of quantum symmetries. Its elements (also called “connections” on
the given pair of graphs) can be added and multiplied in a way analogous to what is done
for representation of groups; in particular, this algebra has a unit, and one may consider
a set of “irreducible” quantum symmetries, that, by definition, build up a basis of linear
generators for this algebra (an analogue of the notion of irreducible representations). Using
multiplication, we may also single out, in each case, two (algebraic) generators, usually
called “chiral left” and “chiral right” generators, playing the role of fundamental represen-
tations for groups: all other irreducible elements can be obtained as linear combinations
of products of these two generators. The Ocneanu graph precisely encodes this algebraic
structure: its number of vertices is equal to the number of irreducible elements and edges
encode multiplication by the two generators.

When the two chosen Dynkin diagrams coincide, we can find another interpretation
for the Ocneanu graph (and algebra) of quantum symmetries. This is actually the case of
interest, for us, in the present paper. Here is a sketch of the theory. One first considers
elementary paths (i.e., genuine paths) on the chosen Dynkin diagramG; one then build
the Hilbert space Path(G) of all paths, by taking linear combinations of elementary paths
and declaring that elementary paths are orthogonal. This vector space provides a path
model for the Jones algebra associated withG. The next step is to consider the vector
subspace EssPath(G) of essential paths: by definition, they span the intersection of kernels
of all Jones projectors; in the classical situation, the essential paths starting from the origin
would correspond to projectors on the symmetric representations ofSU(2) (or of finite
subgroups ofSU(2)). We refer to the paper [7] (to be contrasted with [6]) where a geometrical
study of the classical binary polyhedral groups [14] (symmetries of Platonic bodies) is
performed, using McKay correspondence [15], by studying paths and essential paths on
the affine Dynkin diagrams of typeE(1)

6 , E(1)
7 andE(1)

8 . Essential paths start somewhere
(a), end somewhere (b) and have a certain length (n). The finite-dimensional vector space
EssPath(G) is therefore graded by the lengthnof the paths: EssPath(G) = ⊕nEssPathn(G).
Notice that essential paths are usually linear combinations of elementary paths. We may
then build the graded algebraA

·= ⊕n End(EssPathn(G)), where each summand is the
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space of endomorphisms of EssPathn(G); they can be explicitly written as square matrices.
The algebraA is not only an algebra (for the obvious composition◦ of endomorphisms)
but also abi-algebra: using concatenation of elementary paths together with the existence
of a scalar product on Path(G), one can define a convolution product∗ on A. Details
concerning this construction, also due to Ocneanu, and about its interpretation in the case
of affine ADE diagrams (i.e., in the case ofSU(2) itself and the usual polyhedral groups)
will be found in [8].A is therefore a kind of finite-dimensional and quantum analogue of
the Racah–Wigner bi-algebra. Being semi-simple for both algebra structures◦ and∗, we
may decomposeA as a sum of square matrices (blocks) in two different ways. For the first
structure (◦), which is obvious from its very definition, the corresponding projectors are
labelled byn (the length of essential paths). For the second structure (∗), the blocks are
labelled by an index, that we shall callx; the Ocneanu algebra is then precisely the algebra
spanned by thosex, i.e., by the corresponding projectors: this is an analogue of the table
of multiplication of characters (convolution product) for a finite group. The underlying
vector space ofA possesses two adapted basis, one is expressed in terms of the “double
triangles of Ocneanu” (that we prefer to draw as a “fermionic” diffusion graph with a
connecting vertical “photon” line labelled byn), the other in terms of diffusion graphs with
horizontal “very thick lines” labelled byx, the vertices of the Ocneanu graph. The change
of basis between the two adapted basis can be thought of as a duality relation; it is a kind
of generalized Fourier transform involving quantum Racah symbols at a particular root of
unity depending on the chosen Dynkin diagram. It will also be conceptually important to
consider the lengthn as labelling a particular vertex of anAN graph (the first vertex to the
left being labelled 0).

Several constructions used in our paper can certainly be understood in terms of planar
algebras [12] (see also [11]), nets of subfactors [2,3], or in terms of braided categories
[13], but we shall not discuss this here. We do not plan, in the present paper, to give any
interpretation of these constructions in terms of standard Hopf algebra constructions: this
has not been worked out, yet.

2.2. Structure of the following sections

2.2.1. The diagram (ADE) and its adjacency matrix
We give the diagramG itself, choose a particular labelling for vertices and give the

adjacency matrixG in a specified basis. We consider verticesσv of G as would be irre-
ducible representations for a quantum analogue of a group algebraHG that we do not
need to define. We also write down the normβ of G (the biggest eigenvalue ofG) and the
Perron–Frobenius eigenvectorD (i.e., the normalized eigenvector corresponding toβ, with
its smallest component, associated with the vertexσ0, normalized to the integer 1). The
components ofD give (by definition) the quantum dimensions of the irreducible represen-
tationsσv. In all cases,β is equal to theq-number1 [2]q = q + 1/q = 2 cos(π/κ). This
valueκ is, by definition, the Coxeter number of the graph. In all cases, theq-dimension of
σ0 (the marked vertex) is [1]q = 1. More information can be gathered, for instance, from the
book [10].

1 We define [n]q = (qn − q−n)/(q − q−1), whereq = exp(iπ/κ).
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We should remember the values of Coxeter numbers for the various ADE Dynkin dia-
grams:

An Dn+2 E6 E7 E8

Coxeter number n + 1 2(n + 1) 12 18 30

2.2.2. The graph algebra of the Dynkin diagram and the quantum table of characters
The next step is to associate with the diagramG, when possible, a commutative algebra

playing the role of an algebra of characters. This algebra is linearly generated, as a vector
space, by the verticesσv of G. As an associative algebra, it admits a unitσ0 and one gener-
atorσ1, with quantum dimension [2]q . The relations of this associative algebra are defined
by the graphG itself, considered as encoding multiplication by the generatorσ1: the irre-
ducible representations appearing in the decomposition ofσ1σ , with σ , a vertex ofG, are
the neighbours ofσ on the diagramG. We impose, furthermore, that the structure constants
of this algebra should be positive integers, as it is the case for irreducible representations of
groups or, more generally, of Hopf algebras. It is (almost well) known, since [19] that, for
ADE diagrams, the solution to the above problem does not exist forE7 andDodd. For all
other ADE diagrams, there exists a unique solution. This algebra is called the graph algebra
associated withG, or the fusion algebra associated withG and sometimes [25], the dual
Pasquier algebra ofG. Such a commutative algebra is also a “positive integral hypergroup”,
or simply an hypergroup, when no confusion arises (see [1] and references therein). We
shall denote this algebra by the same symbol as the graph itself, and hope that no confusion
with the simple Lie group bearing the same name will arise. Practically, we have to build
a multiplication table, the first two rows and columns being already known (multiplica-
tion by the unitσ0 and by the generatorσ1). The table is built in a very straightforward
way, by imposing associativity. For instance, in the case of the graphAn, n > 4, let us
calculate,

σ2σ2 = (σ1σ1 − σ0)σ2 = σ1σ1σ2 − σ0σ2 = σ1(σ1 + σ3) − σ2

= σ0 + σ2 + σ2 + σ4 − σ2 = σ0 + σ2 + σ4.

In every case (exceptE7 andDodd) we shall give the multiplication table of the graph
algebra. When writing down this table, and in order to save space, we shall drop the symbols
σ and refer to the different vertices only by their subscript.

The graph matrix algebra of the ADE diagramG, with r vertices, is a matrix algebra
linearly generated byr matrices of sizer × r providing a faithful realization of the graph
algebra spanned by theσa ’s. Its construction is straightforward: toσ0 one associates the
unit matrix (call itG0) and to the generatorσ1, we associate a matrixG1 equal to the
adjacency matrixG of the diagram; to the other verticesσa , expressed in terms ofσ0 and
σ1 we associate the corresponding matricesGa given in terms ofG0 andG1. Since these
last two matrices are already explicitly known, in order to save space, we shall just give the
polynomial expressions giving theGj in terms of these two.

In the particular case ofAN graphs, the fusion matricesGi will be also calledNi .
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The r matricesGa commute with one another (they are all polynomials in one and the
sameG1) and can be simultaneously diagonalized thanks to a matrixSG. If the σa ’s were
irreducible representations of a finite group, this matrixSG would be the table of characters
for this finite group, i.e., the result of the pairing between conjugacy classes and irreducible
characters (notice that we do not need to build explicitly the conjugacy classes!). In the
present situation,SG is the quantum analogue of a table of characters. In the case ofAN

graphs, the same matrix, simply denoted byS, represents one of the generators of the
modular groupSL(2,Z) (Verlinde–Hurwitz representation).

2.2.3. Essential matrices and paths
The general definition of essential paths on a graph was defined by Ocneanu [16], but

we do not need this precise definition here because we just need to count these particular
paths. We shall nevertheless recall this definition in the appendix. It is enough to know that
the general notion of essential paths generalizes the notion of symmetric (orq-symmetric)
representations (at least for those paths starting from the origin). Some general comments
and particular cases (diagramsE6 andE(1)

6 ) can be read in [6,7]. The numberEa [p, b] of
essential paths of lengthp starting at some vertexa and ending on the vertexb is given by
the component of the row vectorEa(p) defined as follows:

• Ea(0) is the (line) vector characterizing the chosen initial vertex;
• Ea(1)

·=Ea(0) · G;
• Ea(p)

·=Ea(p − 1) · G − Ea(p − 2).

The expression ofEa(0) depends on the chosen ordering of vertices; it is convenient
anyway to setE0(0) = (1,0,0, . . . ) for the unitσ0 of G, andE1(0) = (0,1,0, . . . ) for
the generatorσ1. For a graph withr vertices, starting fromEa(0), wewouldobtain in this
wayr rectangular matricesEa with infinitely many rows (labelled byp = 0,1,2, . . . ) and
r columns (labelled byb).

The reader can check that, for Dynkin ADE diagrams, the numbersEa(p) are positive
integersprovided0 ≤ p ≤ κ−2 (κ being the Coxeter number of the graph), but this ceases
to be true as soon asp > κ − 2. For instance, in the case of theE6 graph, whereκ = 12,
we getE0(11) = (0,0,0,0,0,0), E0(12) = (0,0,0,0,−1,0). This reflects the fact [16]
that essential paths on these graphs, with a length bigger thanκ − 2, do not exist. We call
“essential matrices” ther rectangular(κ − 1) × r matrices obtained by keeping only the
firstκ−1 rows of theEa(·)′s. For every ADE diagram, these finite-dimensional rectangular
matrices will still be denoted2 by Ea . The components of the rectangular matrixEa are
denoted byEa [p, b]. Matrix elements of these matrices can be displayed as vertices with
three edges labelled bya, b, p (or, dually, as triangles). Warning: the smallest value forp,
the length of essential paths, is 0, and not 1.

In order to save space, we shall not give explicitly all these matricesEa , although they
are absolutely crucial for obtaining the next results; however their calculation, using the
above recurrence formulae, is totally straightforward, once the matrixG1 ≡ G is known.
The pattern of non-zero entries of an essential matrixEa , associated with some graphG,
gives a figure expressing “visually” the structure of the space of essential paths starting

2 Not to be confused with the symbol used for the exceptional Dynkin diagrams themselves!
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from a. These essential matrices were introduced in [6] as a convenient tool, but the ge-
ometrical patterns themselves were first obtained by Ocneanu (the essential paths starting
from all possible vertices are displayed, for all ADE graphs, in the appendix of [16]).
In the following sections, we shall only display the essential matrixE0 that encodes es-
sential paths starting from the origin. Let us finally mention that a list of the rectangular
matricesE0’s (not theEa ’s), interpreted in the context of RSOS models, can be found
in [23].

When the diagram is not an ADE but anaffineADE, the essential matrices are no longer
of finite size: they have infinitely many rows; they can be interpreted in terms of the classical
induction–restriction theory for representations ofSU(2) and its finite subgroups (binary
polyhedral groups) (see the lecture notes [7] for a study of the corresponding classical
geometries, along the above lines).

For Dynkin diagrams of typeAN , we have the relationNi = Ni−1 · G −Ni−2, and from
the above definition of essential matrices, we see that there is no difference, in this case,
between the fusion graph matricesGi = Ni and the essential matricesEi .

Before ending this section, we should point out the fact that since rows of the essential
matrices associated with a particular Dynkin diagramG have labelsp running from 0 to
κ − 1, they are therefore also indexed by the verticesτp of the Dynkin diagramAκ−1.
In this way, we can interpret these essential matrices as a kind of quantum analogue of
the theory of induction/restriction: irreducible representations ofAκ−1 can be “reduced”
to irreducible representations ofG (essential matrices can be read “horizontally” in this
way) and irreducible representations ofG can “induce” irreducible representations ofAκ−1
(essential matrices can be read “vertically” in this way). Rather than displaying the essential
matrices, or the corresponding spaces of paths, we shall only give, for each vertex of the
graphG, the list of induced representations ofAκ−1. This information can be deduced
immediately from the essential matrixE0. In other words, we consider, for each vertexσv
of G an associated quantum vector bundle and decompose the space of its sections into
irreducible representations ofAκ−1.

2.2.4. Dimensions of blocks for the Racah–Wigner–Ocneanu bi-algebras
The Racah–Wigner–Ocneanu bi-algebraA is a direct sum of blocks in two different ways

(see Section 2.1). Its dimension is obtained either by summing the squaresd2
n , wheredn

is the number of essential paths of lengthn or by summing the squaresd2
x , where thedx

are the sizes of the Ocneanu blocks. The integersdn are obtained by summing all matrix
elements of the rown+ 1 over all essential matricesEa (all verticesa of a given diagram).
This first calculation is relatively easy.

The integersdx giving the number of “vertices” labelled by(a, b, x) can be obtained from
the multiplication table ofHOc(G). If the labelx of an Ocneanu block is of the typea⊗̇b,
or a linear combination of such elements (the notation⊗̇ is introduced later in the text),
and whenHOc(G) is commutative and contains two (left and right) subalgebras isomorphic
with the graph algebra of the Dynkin diagramG, the integersdx = da⊗̇b can be obtained
simply by summing all matrix elements(Σx)

c
d of the matricesΣx=·GaGb, whereGa and

Gb are fusion matrices of the Dynkin diagramG. This holds in particular forAN and for the
exceptional casesE6 andE8. The other cases—in particular the case ofE7—are slightly
more involved. We refer to the corresponding sections.
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The knowledge of integersdn, dx was implicit in the work of Ocneanu, already presented
to several audiences years ago (for instance [18]). The values ofdn and dx were first
published, for theE6 case, in [6] (the treatment of theE8 case being the same). General
results, for all cases, were published in [22]. We take advantage of the explicit realization
that we find for the bialgebraHOc(G) to recover easily all the results, including the more
difficult E7 case (see the corresponding section).

We give the integersdn, dx and the sums
∑

dn,
∑

dx and
∑

d2
n = ∑

d2
x . The equality

of squares is a direct consequence of the bi-algebra structure. In most cases (notDeven) one
finds also that

∑
dn = ∑

dx ; this can be understood as coming from a change of basis in
the vector space EssPath(G). The equality of sums can actually be also achieved forDeven
by performing the summation only on particular classes of elements (see the discussion
made in [22].)

2.2.5. The Ocneanu graph corresponding to a Dynkin diagram and its algebra
The Ocneanu graph Oc(G) associated with a Dynkin diagramG was already discussed

in Section 2.1. As already stated, we take it directly from reference [16].
One of our purposes is to give an explicit presentation for the corresponding algebras,

that will be calledHOc(G). In most cases it will be obtained from the tensor square of
some graph algebra, by taking the tensor product over a particular subalgebra (not over the
complex numbers). The multiplication is the natural one, namely:(a1 ⊗ b1)× (a2 ⊗ b2) =
a1a2 ⊗ b1b2, and we shall identifyau ⊗ b anda ⊗ ub, wheneveru belongs to the par-
ticular subalgebra over which the tensor product is taken (we use the notation⊗̇). In
other words, we take the quotient of the tensor square of the appropriate graph algebra
by the two-sided ideal generated by elements 0⊗ u − u ⊗ 0, where 0 is the unit of
the graph algebra ofG. In the cases ofDodd andE7, the above construction has to be
“twisted”: some elementsau⊗b have to be identified witha⊗ρ(u)b, butρ is not the iden-
tity map.

In most cases, the graph algebra to be used in the above construction is the graph algebra
of G itself. In the case of the diagramE7, however, one has to use the graph algebra ofD10.
For the diagramD2n+1 one has to use the graph algebra ofA4n−1. For the diagramD2n,
elements ofHOc(D2n) also involve 2× 2 matrices.

In general, the elementsu that are used to define the appropriate two-sided ideal belong
to a subalgebraU that admits a complementary subspaceP which is invariant by left and
rightU -multiplications (a general feature since the algebraU is semi-simple). This property
implies that elements ofHOc(G) can be decomposed into linear combinations of only four
types of elements belonging to 0⊗̇U , 0⊗̇P , P ⊗̇0 andP ⊗̇P .

Following Ocneanu terminology, we call “chiral left subalgebra” or “chiral right subal-
gebra” the subalgebras spanned by left or right generators (σ1 ⊗ σ0 or σ0 ⊗ σ1) and
“ambichiral” the intersection of the chiral parts. Left and right subalgebra are respectively
described on Ocneanu graphs by fat continuous lines, and fat dashed lines. The thin lines
(continuous or dashed) represent right or left cosets.

Warning. A given algebraHOc(G) is, in a sense, already defined by its graph Oc(G) since
the later describes multiplication by the two chiral generators. What we do in this paper is
to propose, for all Dynkin diagramG, an explicit realization of these algebrasHOc(G), in
terms of usual graph algebras. In turn, this realization allows us in a simple way to determine
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all the toric matrices associated with a given diagram (see below). We stress the fact that
the quantum graphs Oc(G) are taken from [16], however the proposed realizations for the
algebrasHOc(G) are ours.

The number of vertices of Oc(G)depends very much of the choice ofG itself (for instance
Oc(E6) contains 12 points, Oc(E7) contains 17 points, Oc(E8) contains 32 points).

2.2.6. Modular invariant partition functions and twisted partition functions
To every vertexx of the Ocneanu graph Oc(G) of the Dynkin diagramG, one associates

a particular “toric matrix”Wx . These matrices are related to the study of paths on the Oc-
neanu graphs: the matrix element(Wx)i,j of Wx gives the number of independent paths
leaving the vertexx of Oc(G) and reaching the origin 0̇⊗0 of Oc(G) after having per-
formedi essential steps (respectivelyj essential steps) on the left (respectively right) chiral
subgraphs. These matrices have other uses and interpretations (in particular in terms of the
cell calculus or in terms of the “chiral modular splitting” [17] but this will not be discussed
here.

As written in Section 1, these toric matrices were defined and obtained by Ocneanu
(unpublished but advertised in several conferences since 1995, for instance [18]). Reference
[22] gives closed formulae for the determination of these objects, in the language of CFT.
One of our purposes, in the present paper, is to find them by another method, which consists
in a straightforward generalization of the technique introduced in [6]. This method uses
explicitly our realization of the algebrasHOc(G) in terms of graph algebras.

Our first step is to compute the appropriate essential matrices (those of the graph associ-
ated with the graph algebra involved in the previous step); generally, i.e., not forE7 orDodd,
these are ther essential matrices of the graphG itself. As discussed previously, they are
rectangular matricesEa of size(κ−1)× r. We then construct “reduced essential matrices”
Ered
a by keeping only those columns associated with the subalgebra over which the tensor

product is taken (i.e., we replace the other entries by 0). These are again rectangular matrices
of size(κ − 1) × r.

We then define matricesW [a, b] associated with elementsx = a ⊗ b of the algebra
HOc(G) as square matrices of size(κ − 1) × (κ − 1) by setting

W [a, b]
·=Ea · Ẽred

b ≡ (Ea) · transpose(Ered
b ) = (Ea)

red · transpose(Ered
b ).

The pointsx of Oc(G) are, in general, linear combinations of elements of the typea⊗̇b.
The toric matricesWx associated with pointsx = ∑

a⊗̇b of Oc(G) are square matrices of
size(κ − 1) × (κ − 1). They are obtained by setting

Wx =
∑

W [a, b].

In the case ofE7 andDodd the above construction should be slightly twisted (see the
relevant sections for details).

There are several ways to display the results: one possibility is to give the collection
of all toric matricesWx = W [a, b] with matrix elementsW [a, b](i, j), another one is to
fix i andj (with 1 ≤ i, j ≤ κ − 1) and display the Ocneanu graph itself labelled by the
entriesW [a, b](i, j). For physical reasons (at least for traditional reasons) we prefer to
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display the corresponding (twisted) partition functions: settingχ=·{χ0, χ1, χ2, . . . , χκ−2},
we associate withWx = W [a, b] a partition function

Zx ≡ Z[a, b]
·= χ̄W [a, b]χ.

To ease the reading of the paper we put all these partition functions in tables to be found
at the end of the article. The matrix elements of allW [a, b] are always positive integers.
However, in order to display the results in tables, we had sometimes to group together several
terms and introduce minus signs that will disappear if the sesquilinear forms are expanded.

These quantities can be interpreted in terms of twisted partition functions for ADE bound-
ary conformal field theories (see3 [20,22]).

The partition functionZ[0,0] associated with the originσ0 ⊗ σ0 is the usual modular
invariant partition function of Itzykson, Capelli and Zuber. The others are not modular
invariant. We should remember, at that point, that the representation of the modular group
provided by the usualS andT matrices, in the representation of Verlinde–Hurwitz, is usually
not effective: for instance in the case ofE6, whereκ = 12, on top of relationsS4 = (ST)3 =
1, one getsT 4κ=48 = 1 (andT s �= 1 for smaller powers ofT ). The representation actually
factorizes through a congruence subgroup ofSL(2,Z) and one obtains a representation of
SL(2,Z/48Z) (one can check that all the defining relations given in [9] are verified).

2.2.7. Summary of notations

• G is the chosen Dynkin diagram of type ADE. It hasr vertices. We also callG the fusion
algebra (graph algebra) of this Dynkin diagram, when it exists.

• G is the adjacency matrix ofG.
• κ is the Coxeter number ofG.
• q is a primitive root of unity such thatq2κ = 1.
• Aκ−1 is the graph of typeA with same Coxeter numberκ asG.
• Ni = (Ni)

j
k are the fusion matrices for the graph algebra (fusion algebra) ofAκ−1.

• Ga = (Ga)
b
c are the fusion matrices for the graph algebra (fusion algebra) ofG, when it

exists.
• SG is anr × r matrix that (in all cases butE7 andDodd) diagonalizes simultaneously the
r fusion matricesGa of the diagramG. When the diagramG is of typeA, we just call it
S.

• Ea = (Ea)
i
b are the essential matrices for the graphG.

• Fi = (Fi)
a
b

·=(Ea)
i
b provide a representation of the graph algebra ofAκ−1. MatricesFi

(orEa) describe the couplings between verticesa, b of G and the vertexi of Aκ−1.
• Oc(G) is the Ocneanu graph associated withG.
• Σx = (Σx)

a
b are matrices describing the dual couplings between verticesa, b of G and

the vertexx of the Ocneanu graph Oc(G).
• Wx = (Wx)

i
j are the toric matrices (of size(κ−1)× (κ−1)) associated with the vertices

of Oc(G).
• Zx is the twisted partition function associated withWx .

3 This is also discussed in a very recent preprint [5].
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Fig. 1. TheA4 Dynkin diagram and its adjacency matrix.

3. The An cases

3.1. A4

TheA4 Dynkin diagram and its adjacency matrix are displayed in Fig. 1, where we use
the following order for the basis:{τ0, τ1, τ2, τ3}.

Hereκ = 5, the norm of the graph is the golden numberβ = 2 cos(π/5) = (1+√
5)/2,

and the normalized Perron–Frobenius vector isD = ([1]q, [2]q, [2]q, [1]q).
TheA4 Dynkin diagram determines in a unique way the graph algebra ofA4, whose

multiplication table is displayed in Table 1.
The fusion matricesNi are given by the following polynomials:

N0 = Id4 (the identity matrix), N1 = GA4, N2 = N1 · N1 − N0,

N3 = N1 · N1 · N1 − 2 · N1.

They provide a faithful realization of the fusion algebraA4. In the chosen basis, they read:

N0 =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 , N1 =




0 1 0 0

1 0 1 0

0 1 0 1

0 0 1 0


 ,

N2 =




0 0 1 0

0 1 0 1

1 0 1 0

0 1 0 0


 , N3 =




0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


 .

Table 1
Multiplication table for theA4 graph algebra
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We form the tensor productA4 ⊗A4, whose dimension is 16, but we take it overA4. The
Ocneanu algebra ofA4 can be realized as the algebra of dimension 4 defined by

HOc(A4) = A4⊗̇A4
·=A4 ⊗ A4

A4
= A4 ⊗A4 A4.

It is spanned by a basis with four elements:

0 = 0⊗̇0, 1 = 1⊗̇0, 2 = 2⊗̇0, 3 = 3⊗̇0,

and is isomorphic to the graph algebraA4 itself. For this reason, the Ocneanu graph
Oc(A4) is the same as the Dynkin diagramA4. Its elements are of the kindm⊗̇n =
0⊗̇mn = mn⊗̇0. The dimensionsdn, with n in (0,1,2,3), for the four blocks of the
Racah–Wigner–Ocneanu bi-algebraA endowed with its first multiplicative law are re-
spectively:(4,6,6,4). For its other multiplicative law (convolution), the dimensionsdx
of the four blocks, labelled withx in the list (0⊗̇0,1⊗̇0,2⊗̇0,3⊗̇0) are also respectively:
(4,6,6,4).

We have of course
∑

dn = ∑
dx = 20 and

∑
d2
n = ∑

d2
n = 104 but this observation is

trivial in that case.
In theA4 case (as in allAn cases) the essential matricesEi happen to be the same as the

Ni matrices. The four toric matricesWab of theA4 model are also equal to theNi matrices,
W00 = N0 being the modular invariant. We write them as sesquilinear forms (the twisted
partition functions given in the appendix).

3.2. An

We display in Fig. 2 the Dynkin diagram ofAn, for n > 4.
In all An cases, the graph algebra is completely determined, in a unique way, by the data

of the corresponding Dynkin diagram. The Ocneanu algebra ofAn can be realized as

HOc(An) = An⊗̇An
·=An ⊗An An,

and appears to be isomorphic to the graph algebraAn itself. Due to this fact, which occurs
only in theAn cases, the Ocneanu graphs are also equal to the corresponding Dynkin

Fig. 2. TheAn Dynkin diagram and its adjacency matrix.
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diagrams. The fusion matricesNi are given by the following polynomials:

N0 = Idn,

N1 = GAn,

N2 = N1 · N1 − N0,

... = ...

Ni = Ni−1 · N1 − Ni−2.

The essential matrices, as well as then toric matrices of theAn model are equal to these
fusion matrices. We just give the modular invariant in sesquilinear form

An : Z0 =
n∑

i=0

|χn|2 ∀n ≥ 3.

It is easy to see that, forAn, the dimensionsdp of the blocks, forp from 0 ton − 1 are
given bydp = (p + 1)(n − p).

4. The E6 case

TheE6 diagram and its adjacency matrix are displayed in Fig. 3. We use the following
order for the vertices:{σ0, σ1, σ2, σ5, σ4, σ3}.

Hereκ = 12, the norm of the graph isβ = 2 cos(π/12) = (1 + √
3)/

√
2 and the

normalized Perron–Frobenius vector isD = ([1]q, [2]q, [3]q, [2]q, [1]q, [3]q/[2]q).
TheE6 Dynkin diagram determines in a unique way the multiplication table for the graph

algebra ofE6, displayed in Table 2.
The fusion matricesGi are given by the following polynomials:

G0 = Id6, G1 = GE6, G2 = G1 · G1 − G0,

G4 = G1 · G1 · G1 · G1 − 4G1 · G1 + 2G0, G5 = G1 · G4,

G3 = −G1 · (G4 − G1 · G1 + 2G0).

Essential matrices have 6 columns and 11 rows. They are labelled by vertices of diagrams
E6 andA11. They are calculated as explained in Section 2.2.3. With the order chosen for

Fig. 3. TheE6 Dynkin diagram and its adjacency matrix.
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Table 2
Multiplication table for the graph algebra ofE6

vertices (012543) notice that the first row of matrixE5, e.g., isE5(0) = (000100). The
first essential matrixE0 (essential paths leaving the origin) is given in Fig. 4, together with
the corresponding induction–restriction graph (E6 diagram with vertices labelled byA11
vertices).

The subspaceA3 generated by the elements{0,3,4} is a subalgebra of the graph algebra of
E6 and leaves invariant (by multiplication) the complementary vector subspace generated
by {1,2,5}. In other words, the subalgebraA3 of E6 admits a two-sidedA3-invariant
complement. We form the tensor productE6 ⊗ E6, but we take it over the subalgebraA3
and define the following algebra:

HOc(E6) = E6⊗̇E6
·=E6 ⊗ E6

A3
= E6 ⊗A3 E6.

We have, e.g., 3̇⊗1 = 0⊗̇31 = 0⊗̇2, and 4̇⊗1 = 0⊗̇41 = 0⊗̇5.
HOc(E6) is spanned by a basis with 12 elements:

0 = 0⊗̇0, 3 = 3⊗̇0, 1′ = 0⊗̇1, 31′ = 3⊗̇1,

1 = 1⊗̇0, 4 = 4⊗̇0, 11′ = 1⊗̇1, 41′ = 4⊗̇1,

2 = 2⊗̇0, 5 = 5⊗̇0, 21′ = 2⊗̇1, 51′ = 5⊗̇1.

Fig. 4. Essential matrixE0 and essential paths from the vertex 0 for theE6 model.
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Fig. 5. TheE6 Ocneanu graph.

The element 0̇⊗0 is the identity. The elements 1⊗̇0 and 0̇⊗1 are respectively the chi-
ral left and right generators; they span separately two subalgebrasE6 ⊗ 0 and 0⊗ E6,
both isomorphic with the graph algebra itself. The ambichiral part is the linear span of
{0,3,4}. We can easily check that multiplication by generators ofHOc(E6) is indeed en-
coded by the Ocneanu graph ofE6, represented in Fig. 5. The full lines encode mul-
tiplication by the chiral left generator 1. For example: 1· 2 = 1 + 3 + 5 and in the
E6 Ocneanu graph the vertices 1,3 and 5are joined to the vertex 2by a full line. The
dashed lines encode multiplication by the chiral right generator 1′. For example: 1′ ·
4 = 41′ and in theE6 Ocneanu graph the vertices 4and 41′ are joined by a dashed
line.

The dimensionsdn, with n in (0,1,2, . . . ,10), for the 11 blocks of the Racah–Wigner–
Ocneanu bi-algebraA endowed with its first multiplicative law are respectively

(6,10,14,18,20,20,20,18,14,10,6).

For its other multiplicative law (convolution), the dimensionsdx of the 12 blocks, labelled
with x in the list(0⊗̇0,3⊗̇0,4⊗̇0,1⊗̇0,2⊗̇0,5⊗̇0,0⊗̇1,0⊗̇2,0⊗̇5,1⊗̇1,2⊗̇1,5⊗̇1) are
respectively

(6,8,6,10,14,10,10,14,10,20,28,20)

Notice that
∑

dn = ∑
dx = 156 and

∑
d2
n = ∑

d2
x = 2512.

The 12 toric matricesWab of theE6 model are obtained as explained in Section 2.2.5;
for instanceW4⊗̇1 = E4 · Ẽred

1 . We recall only the matrix expression ofW00 (the modular
invariant itself). The 11 other matrices,4 are written as sesquilinear forms in the appendix

4 They were already given in [6].
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(they are the twisted partition functions).

W00 =




1 · · · · · 1 · · · ·
· · · · · · · · · · ·
· · · · · · · · · · ·
· · · 1 · · · 1 · · ·
· · · · 1 · · · · · 1

· · · · · · · · · · ·
1 · · · · · 1 · · · ·
· · · 1 · · · 1 · · ·
· · · · · · · · · · ·
· · · · · · · · · · ·
· · · · 1 · · · · · 1




.

5. The E8 case

TheE8 Dynkin diagram and its adjacency matrix are displayed in Fig. 6. We use the
following order for the vertices:{σ0, σ1, σ2, σ3, σ4, σ7, σ6, σ5}.

Hereκ = 30, the norm of the graph isβ = 2 cos(π/30) and the normalized Perron–
Frobenius vector isD = ([1]q, [2]q, [3]q, [4]q, [5]q, [7]q/[2]q, [5]q/[3]q, [5]q/[2]q).

As for theE6 case, theE8 Dynkin diagram determines in a unique way the multiplication
table for the graph algebra ofE8, displayed in Table 3.

Fig. 6. TheE8 Dynkin diagram and its adjacency matrix.

Table 3
Multiplication table for the graph algebra ofE8.
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Fig. 7. Essential matrixE0 and essential paths from the vertex 0 for theE8 model.

The fusion matricesGi are given by the following polynomials:

G0 = Id8, G1 = GE8, G2 = G1 · G1 − G0, G3 = G1 · G1 · G1 − 2G1,

G4 = G1 · G1 · G1 · G1 − 3G1 · G1 + G0, G6 = G2 · G4 − G2 − 2G4,

G7 = G1 · G6, G5 = G2 · G7 − G3 − G7.

Essential matrices have 8 columns and 29 rows. They are labelled by vertices of diagrams
E8 andA29. The first essential matrixE0 (essential paths leaving the origin) is given
in Fig. 7, together with the corresponding induction–restriction graph (E8 diagram with
vertices labelled byA29 vertices).

The subspaceA2 generated by the elements{0,6} is a subalgebra of the graph alge-
bra ofE8 that admits a two-sidedA2-invariant complement. We form the tensor product
E8 ⊗ E8, but we take it over the subalgebraA2. The Ocneanu algebra ofE8 can be rea-
lized as

HOc(E8) = E8⊗̇E8
·=E8 ⊗ E8

A2
= E8 ⊗A2 E8.

For instance 6̇⊗0 = 0⊗̇6, 6⊗̇1 = 0⊗̇7, 6⊗̇2 = 0⊗̇4, 6⊗̇5 = 0⊗̇3.
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HOc(E8) is spanned by a basis with 32 elements:

0 = 0⊗̇0, 1′ = 0⊗̇1, 2′ = 0⊗̇2, 5′ = 0⊗̇5,

1 = 1⊗̇0, 11′ = 1⊗̇1, 12′ = 1⊗̇2, 15′ = 1⊗̇5,

2 = 2⊗̇0, 21′ = 2⊗̇1, 22′ = 2⊗̇2, 25′ = 2⊗̇5,

3 = 3⊗̇0, 31′ = 3⊗̇1, 32′ = 3⊗̇2, 35′ = 3⊗̇5,

4 = 4⊗̇0, 41′ = 4⊗̇1, 42′ = 4⊗̇2, 45′ = 4⊗̇5,

5 = 5⊗̇0, 51′ = 5⊗̇1, 52′ = 5⊗̇2, 55′ = 5⊗̇5,

6 = 6⊗̇0, 61′ = 6⊗̇1, 62′ = 6⊗̇2, 65′ = 6⊗̇5,

7 = 7⊗̇0, 71′ = 7⊗̇1, 72′ = 7⊗̇2, 75′ = 7⊗̇5.

The element 0̇⊗0 is the identity. The elements 1⊗̇0 and 0̇⊗1 are respectively the chiral
left and right generators; they span independently the subalgebrasE8 ⊗ 0 and 0⊗ E8.
One can easily check that multiplication by these two generators is indeed encoded by the
Ocneanu graph ofE8, represented in Fig. 8. Full lines (respectively dashed lines) encode
multiplication by the chiral left (respectively chiral right) generator. The ambichiral part is
the linear span of{0,6}.

The dimensionsdn, with n in (0,1,2, . . . ,28), for the 29 blocks of the Racah–Wigner–
Ocneanu bi-algebraA endowed with its first multiplicative law are respectively

(8,14,20,26,32,38,44,48,52,56,60,62,64,64,64,64,64,62,60,56,52,

48,44,38,32,26,20,14,8).

Fig. 8. TheE8 Ocneanu graph.
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For its other multiplicative law (convolution), the dimensionsdx of the 32 blocks, la-
belled with x in the list (0⊗̇0,1⊗̇0,2⊗̇0,3⊗̇0,4⊗̇0,5⊗̇0,6⊗̇0,7⊗̇0,0⊗̇1,1⊗̇1,2⊗̇1,
3⊗̇1, 4⊗̇1, 5⊗̇1, 6⊗̇1, 7⊗̇1, 0⊗̇2, 1⊗̇2, 2⊗̇2, 3⊗̇2, 4⊗̇2, 5⊗̇2,6⊗̇2,7⊗̇2,0⊗̇5,1⊗̇5,
2⊗̇5,3⊗̇5,4⊗̇5,5⊗̇5,6⊗̇5,7⊗̇5) are respectively given by (8, 14, 20, 26, 32, 16, 12, 22,
14, 28, 40, 52, 64, 32, 22, 44, 20, 40, 60, 78, 96, 48, 32, 64, 16, 32, 48, 64, 78, 40,
26, 52).

Notice that
∑

dn = ∑
dx = 1240 and

∑
d2
n = ∑

d2
x = 63136.

The 32 toric matricesWab of theE8 model are obtained as explained in Section 2.2.5; for
instanceW52′ = W5⊗̇2 = E5 · Ẽred

2 . We recall only the matrix expression of the modular
invariantW00. The partition functions corresponding to all the toric matrices are given as
sesquilinear forms in the appendix.

W00 =




1 · · · · · · · · · 1 · · · · · · · 1 · · · · · · · · · 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · 1 · · · · · 1 · · · 1 · · · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · · · · 1 · · · · · · · 1 · · · · · · · · · 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · 1 · · · · · 1 · · · 1 · · · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · 1 · · · · · 1 · · · 1 · · · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · · · · 1 · · · · · · · 1 · · · · · · · · · 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · 1 · · · · · 1 · · · 1 · · · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
1 · · · · · · · · · 1 · · · · · · · 1 · · · · · · · · · 1




.
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6. The Deven case

General formulae valid for all cases of this family are a bit heavy. We therefore only
provide a detailed treatment of the casesD4 andD6 but generalization is straightforward.

6.1. TheD4 case

TheD4 diagram and its adjacency matrix are displayed in Fig. 9. We use the following
order for the vertices:{σ0, σ1, σ2, σ2′ }.

Here κ = 6, the norm of the graph isβ = 2 cos(π/6) = √
3 and the normalized

Perron–Frobenius vector isD = ([1]q, [2]q, [2]q/[2]q = 1, [2]q/[2]q = 1).
For theD4 case (as for all theD2n cases), we have to impose that the structure constants of

its graph algebra should be positive integers, in order for the Dynkin diagram to determine
in a unique way the multiplication table of the graph algebra, (displayed in Table 4).

The fusion matricesGi are given by the following polynomials:

G0 = Id4, G1 = GD4, G2 + G2′ = G1 · G1 − G0.

Imposing that entries ofG2 andG2′ should be positive integers leads to a unique solution
(up toG2 ↔ G2′ ), namely:

G2 =




0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0


 , G′

2 =




0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0


 .

Essential matrices have 4 columns and 5 rows. They are labelled by vertices of diagrams
D4 andA5. The first essential matrixE0 is given in Fig. 10, together with the corresponding
induction–restriction graph (D4 diagram with vertices labelled byA5 vertices).

Fig. 9. TheD4 Dynkin diagram and its adjacency matrix.

Table 4
Multiplication table for the graph algebra ofD4
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Fig. 10. Essential matrixE0 and essential paths from the vertex 0 for theD4 model.

The subspaceJ3 generated by the elements{0,2,2′}, is a subalgebra of the graph algebra
of D4 that admits a two-sidedJ3-invariant complement. We first form the tensor product
D4⊗D4, but we take it over the subalgebraJ3. We get the algebraD⊗̇

4 = D4⊗̇D4
·=D4⊗J3

D4, spanned by a basis with six elements

0⊗̇0, 1⊗̇0, 2⊗̇0, 2′⊗̇0, 0⊗̇1, 1⊗̇1.

The Ocneanu algebra ofD4,HOc(D4), can be realized as a subalgebra of dimension 8 of the
following non-commutative algebra:

D⊗̇
4 ⊕ M(2,C).

The eight elements of the basis are given by

0 = 0⊗̇0 +
(

1 0

0 1

)
, ε = 1

3(1⊗̇1) + θ

(
0 1

1 0

)
,

1 = 1⊗̇0 +
(

0 0

0 0

)
, 1ε = 0⊗̇1 +

(
0 0

0 0

)
,

2 = 2⊗̇0 +
(
α 0

0 β

)
, 2ε = 1

3(1⊗̇1) + θ

(
0 α

β 0

)
,

2′ = 2′⊗̇0 +
(
β 0

0 α

)
, 2′ε = 1

3(1⊗̇1) + θ

(
0 β

α 0

)
.

where

θ2 = 0 (Grassmann parameter), α = −1 + i
√

3

2
, β = −1 − i

√
3

2
.

The multiplication in this algebra is defined by

((e1⊗̇f1) + A) · ((e2⊗̇f2) + B) = (e1 · e2)⊗̇(f1 · f2) + A · B,
wheree1, f1, e2, f2 ∈ D⊗̇

4 andA,B ∈ M(2,C).
The numbersα andβ are determined by the multiplication table ofHOc(D4). For example,

the relations 1· 1 = 0 + 2 + 2′, 2 · 2 = 2′ and 2· 2′ = 0 lead to the equations:α + β =
−1, α · β = 1, α2 = β andβ2 = α, that determines uniquelyα andβ.
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Fig. 11. TheD4 Ocneanu graph and the modular invariant matrix.

Sketch of our construction. We first defineD⊗̇
4 by quotienting the tensor square ofD4 by

the subalgebraJ3 that admits a two-sidedJ3-invariant complement. From the graph Oc(D4)

taken from [16], we see that 1and 1ε separately generate the left and right subalgebras
isomorphic with the graph algebra ofD4, therefore we set 1= 1⊗̇0 and 1ε = 0⊗̇1. We
also see that 1· ε = 1ε; this equality implies that theD⊗̇

4 part ofε should be proportional
to 1⊗̇1 since(1⊗̇0)(1⊗̇1) = (0 + 2 + 2′)⊗̇1 = 3(0⊗̇1). The matrix part ofε and of the
other generators (the coefficientsα andβ) can then be determined by imposing that the
obtained multiplication table should coincide with the multiplication table constructed from
the Ocneanu graph Oc(D4). Such a construction can be generalized to allDevencases.

The element 0is the identity. The elements 1and 1ε are respectively the chiral left and
right generators. The multiplication table of this algebra is given in Table 5, and we can
check that multiplication by the generators is indeed encoded by the Ocneanu graph of
D4, represented in Fig. 11. Warning: the table is not symmetric (the multiplication is not
commutative); for instance 2ε = 2 · ε �= ε · 2. The ambichiral part is the linear span of
{0,2,2′}.

Table 5
Multiplication table of the Ocneanu algebra ofD4
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Fig. 12. TheD6 Dynkin diagram and its adjacency matrix.

Table 6
Multiplication table for the graph algebra ofD6

The dimensionsdn, with n = 0,1,2,3,4 are respectively(4,6,8,6,4). We find that∑
dn = 28 and

∑
d2
n = 168.

The eight toric matricesWab of theD4 model and the corresponding partition functions
are obtained as usual. For instanceWε = W2ε = W2′ε = 1/3E1Ẽ

red
1 . We recall the matrix

expression of the modular invariantW00 and give the others toric matrices as sesquilinear
forms in the appendix.5

6.2. TheD6 case

TheD6 Dynkin diagram and its adjacency matrix are displayed in Fig. 12. We use the
following order for the vertices:{σ0, σ1, σ2, σ3, σ4, σ4′ }.

Hereκ = 10, the norm of the graph isβ = [2]q = 2 cos(π/10) = ((5 + √
5)/2)1/2

and the normalized Perron–Frobenius vector isD = ([1]q, [2]q, [3]q, [4]q, [4]q/[2]q, [4]q/
[2]q).

Imposing positivity, the table of multiplication of the graph algebra ofD6 is completely
determined by its Dynkin diagram (Table 6).

The fusion matricesGi are given by the following polynomials:

G0 = Id6, G1 = GD6, G2 = G1 · G1 − G0, G3 = G2 · G1 − G1,

G4 + G4′ = G1 · G3 − G2

5 The toric matrices ofD4 were already published in [21].
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Fig. 13. Essential matrixE0 and essential paths from the vertex 0 for theD6 model.

Imposing that entries ofG4 andG4′ should be positive integers leads to a unique solution
(up toG4 ↔ G4′ ), namely:

G4 =




0 0 0 0 0 1

0 0 0 1 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 0 0

1 0 0 0 0 1



, G′

4 =




0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 1

0 1 0 1 0 0

1 0 0 0 1 0

0 0 1 0 0 0



.

Essential matrices have 6 columns and 9 rows. They are labelled by vertices of dia-
gramsD6 andA9. The first essential matrixE0 is given in Fig. 13, together with the
corresponding induction–restriction graph (D6 diagram with vertices labelled byA9 ver-
tices).

The subspaceJ4 generated by the elements{0,2,4,4′} is a subalgebra of the graph algebra
of D6 that admits a two-sidedJ4-invariant complement. We first form the tensor product
D6⊗D6, but we take it over the subalgebraJ4. We get the algebraD⊗̇

6 = D6⊗̇D6
·=D6⊗J4

D6, spanned by a basis with 10 elements

0⊗̇0, 1⊗̇0, 2⊗̇0, 3⊗̇0, 4⊗̇0,
4′⊗̇0, 0⊗̇1, 0⊗̇3, 1⊗̇1, 1⊗̇3.

The Ocneanu algebra ofD6,HOc(D6), can be realized as a subalgebra of dimension 12 of
the following non-commutative algebra:

D⊗̇
6 ⊕ M(2,C).
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The 12 elements of the basis are given by

0 = 0⊗̇0 +
(

1 0
0 1

)
, ε = 3

5(1⊗̇1) − 1
5(3⊗̇1) + θ

(
0 1
1 0

)
,

1 = 1⊗̇0 +
(

0 0
0 0

)
, 1ε = 0⊗̇1 +

(
0 0
0 0

)
,

2 = 2⊗̇0 +
(−1 0

0 −1

)
, 2ε = 2

5(1⊗̇1) + 1
5(3⊗̇1) + θ

(
0 −1

−1 0

)
,

3 = 3⊗̇0 +
(

0 0
0 0

)
, 3ε = 0⊗̇3 +

(
0 0
0 0

)
,

4 = 4⊗̇0 +
(
α 0
0 β

)
, 4ε = −1

5(1⊗̇1) + 2
5(3⊗̇1) + θ

(
0 α

β 0

)
,

4′ = 4′⊗̇0 +
(
β 0
0 α

)
, 4′ε = −1

5(1⊗̇1) + 2
5(3⊗̇1) + θ

(
0 β

α 0

)
.

where

θ2 = 0, α = −1 + √
5

2
, β = −1 − √

5

2
.

The element 0is the identity. The elements 1and 1ε are respectively the chiral left
and right generators. The multiplication by these generators is encoded by the
Ocneanu graph ofD6, represented in Fig. 14. The ambichiral part is the linear span of
{0,2,4,4′}.

The dimensionsdn, with n = 0,1,2, . . . ,8, are respectively(6,10,14,16,18,16,14,
10,6). Therefore,

∑
dn = 110 and

∑
d2
n = 1500.

The 12 toric matricesWab of theD6 model and the corresponding partition functions are
obtained as usual. For instanceW2ε = (2/5)E1Ẽ

red
1 + (1/5)E3Ẽ

red
1 . We recall the matrix

expression of the modular invariantW00 and give the others as sesquilinears forms in the
appendix.

6.3. TheDevencase

In the case ofD2s , we first buildD⊗̇
2s = D2s ⊗ D2s/Js+1, of dimension 4s − 2 by

dividing the tensor square ofD2s by the two-sided ideal generated byu⊗ 0− 0⊗u, where
u belongs to the subalgebraJs+1 spanned by{0,2,4,6, . . . , (2s − 4), (2s − 2), (2s − 2)′}.
This subalgebra admits a two-sidedJs+1-invariant complement. We then defineHOc(D2s )

as a subalgebra of dimension 4s of D⊗̇
2s ⊕M(2,C). It is enough to know 0,1 andε to build

explicitly an algebraHOc(D2s ) from the graph Oc(D2s). We fix

0 = 0⊗̇0 +
(

1 0
0 1

)
, 1 = 1⊗̇0 +

(
0 0
0 0

)
, 1ε = 0⊗̇1 +

(
0 0
0 0

)
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Fig. 14. TheD6 Ocneanu graph and the modular invariant matrix.

and set

ε =
∑

aαα⊗̇1 + θ

(
0 1
1 0

)
,

whereα ∈ {1,3, . . . ,2s − 3} and where theaα are scalars uniquely determined by the
(linear) equation 1· ε = 1ε. TheD⊗̇

2s parts of the other elements are then uniquely fixed.
For the elements(2,3, . . . , (2s − 2), (2s − 2)′), it is (2⊗̇0,3⊗̇0, . . . ).

We write the matrix part of(2s − 2), (2s − 2)′ as

(2s − 2) = · · · + θ

(
α 0
0 β

)
, (2s − 2)′ = · · · + θ

(
β 0
0 α

)
.

By imposing that the obtained multiplication table should coincide with the multiplication
table constructed from the Ocneanu graph Oc(D2s), we determine uniquely the expression
of the others elements, and find also the values ofθ, α andβ. In every caseθ2 = 0. Forα
andβ, we find

• s even:α andβ are complexes

α = −1 + i
√
(2s − 1)

2
, β = −1 − i

√
(2s − 1)

2
= α.
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• s odd:α andβ are reals

α = −1 + √
(2s − 1)

2
, β = −1 − √

(2s − 1)

2
.

The tables of fusion for the cases s even and s odd have also a different structure, as it is
clear from the examplesD4 andD6 given in the previous sections.

7. The Dodd case

General formulae valid for all cases of this family are a bit heavy. We therefore only
provide a detailed treatment of the casesD5 andD7 but generalization is straightforward.

7.1. TheD5 case

TheD5 Dynkin diagram and its adjacency matrix are displayed in Fig. 15. We use the
following order for the vertices:{σ0, σ1, σ2, σ3, σ3′ }.

Hereκ = 8, the norm of the graph isβ = [2]q = 2 cos(π/8) = (2 + √
2)1/2 and the

normalized Perron–Frobenius vector isD = ([1]q, [2]q, [3]q, [3]q/[2]q, [3]q/[2]q).
In theD5 case, as in allDodd cases, it is not possible to define a graph algebra at all.
Essential matrices ofD5 have 5 columns and 7 rows. They are labelled by vertices

of diagramsD5 andA7. The first essential matrixE0 is given in Fig. 16, together with
the corresponding induction–restriction graph (D5 diagram with vertices labelled byA7
vertices).

Fig. 15. TheD5 Dynkin diagram and its adjacency matrix.

Fig. 16. Essential matrixE0 and essential paths from the vertex 0 for theD5 model.
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The Ocneanu algebra ofD5 can be realized by using the graph algebra ofA7. ForD2n+1,
we have to use the graph algebra ofA4n−1.

We form the tensor productA7 ⊗ A7, and define an applicationρ : A7 → A7 such that

ρ(i) = i for i ∈ {0,2,3,4,6,7}, ρ(1) = 5, ρ(5) = 1.

We take the tensor product overρ, and define the Ocneanu algebra ofD5 as

HOc(D5) = A7⊗̇A7
·=A7 ⊗ A7

ρ(A7)
.

For instance 2̇⊗0 = 0⊗̇ρ(2) = 0⊗̇2, and 1̇⊗0 = 0⊗̇ρ(1) = 0⊗̇5.
HOc(D5) is spanned by a basis with seven elements

0 = 0⊗̇0, 1 = 1⊗̇0 = 0⊗̇5, 2 = 2⊗̇0 = 0⊗̇2, 3 = 3⊗̇0 = 0⊗̇3,

4 = 4⊗̇0 = 0⊗̇4, 5 = 5⊗̇0 = 0⊗̇1, 6 = 6⊗̇0 = 0⊗̇6.

1⊗̇0 and 0̇⊗1 are respectively the chiral left and right generators. The multiplication by
these generators is encoded by the Ocneanu graph ofD5, represented in Fig. 17. All the
points are ambichiral.

To obtain the toric matrices of theD5 model, we need the essential matricesEi(A7) of
theA7 case (we recall that in theAn cases, the essential matrices are equal to the fusion
matricesNi). We define new essential matricesE

ρ
i (A7)by permuting the columns ofEi(A7)

associated with the vertices 1 and 5. The toric matrices of theD5 model are then obtained
by setting

W [a, b]
·= ·Ea(A7) · ˜(Eρ

b (A7)).

We recall the matrix expression of the modular invariantW00 and give the others as sesquilin-
ears forms in the appendix.

Fig. 17. TheD5 Ocneanu graph and the modular invariant matrix.
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Fig. 18. TheD7 Dynkin diagram and its adjacency matrix.

7.2. TheD7 case

TheD7 Dynkin diagram and its adjacency matrix are displayed in Fig. 18. We use the
following order for the vertices:{σ0, σ1, σ2, σ3, σ4, σ5, σ5′ }.

Hereκ = 12, the norm of the graph isβ = [2]q = 2 cos(π/12) = (1+√
3)/

√
2 and the

normalized Perron–Frobenius vector isD = ([1]q, [2]q, [3]q, [4]q, [5]q, [5]q/[2]q, [5]q/
[2]q).

Essential matrices have 7 columns and 11 rows. They are labelled by vertices of diagrams
D7 andA11. The first essential matrixE0 is given in Fig. 19, together with the corresponding
induction–restriction graph (D7 diagram with vertices labelled byA11 vertices).

The Ocneanu algebra ofD7 can be realized by using the graph algebra ofA11. We form
the tensor productA11 ⊗ A11, and define an applicationρ : A11 → A11 such that

ρ(i) = i for i ∈ {0,2,4,5,6,8,10}, ρ(1) = 9, ρ(3) = 7,

ρ(7) = 3, ρ(9) = 1.

We take the tensor product overρ, and define the Ocneanu algebra ofD7 as

HOc(D7) = A11⊗̇A11
·=A11 ⊗ A11

ρ(A11)
.

Fig. 19. Essential matrixE0 and essential paths from the vertex 0 for theD7 model.
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Fig. 20. TheD7 Ocneanu graph and the modular invariant matrix.

It is spanned by a basis with 11 elements

0 = 0⊗̇0, 4 = 4⊗̇0 = 0⊗̇4, 8 = 8⊗̇0 = 0⊗̇8,

1 = 0⊗̇0 = 0⊗̇9, 5 = 5⊗̇0 = 0⊗̇5, 9 = 9⊗̇0 = 0⊗̇1,

2 = 2⊗̇0 = 0⊗̇2, 6 = 6⊗̇0 = 0⊗̇6, 10 = 10⊗̇0 = 0⊗̇10.

3 = 3⊗̇0 = 0⊗̇7, 7 = 7⊗̇0 = 0⊗̇3,

1⊗̇0 and 0̇⊗1 are respectively the chiral left and right generators. The multiplication by
these generators is encoded by the Ocneanu graph ofD7, represented in Fig. 20. All the
points are ambichiral.

To obtain the toric matrices of theD7 model, we need the essential matricesEi(A11) of
theA11 case. We define new essential matricesE

ρ
i (A11) defined by permuting the columns

of Ei(A11) associated to the vertices 1, 9, and 3, 7. The toric matrices of theD7 model are
then obtained by setting

W [a, b]
·=Ea(A11) · ˜(E

ρ
b (A11)).

We recall the matrix expression of the modular invariantW00 and give the others as sesquilin-
ears forms in the appendix.

8. The E7 case

TheE7 Dynkin diagram and its adjacency matrix are displayed in Fig. 21. We use the
following order for the vertices:{σ0, σ1, σ2, σ3, σ6, σ5, σ4}.
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Fig. 21. TheE7 Dynkin diagram and its adjacency matrix.

Hereκ = 18, the norm of the graph isβ = [2]q = 2 cos(π/18) and the normalized
Perron–Frobenius vector isD = ([1]q, [2]q, [3]q, [4]q, [6]q/[2]q, [4]q/[3]q, [4]q/[2]q).

The graph algebra of the Dynkin diagramE7 is not a positive integral graph algebra. We
give it for illustration but it will not be used in the sequel (Table 7).

The fusion matricesGi are given by the following polynomials:

G0 = Id7, G1 = G, G2 = G1 · G1 − G0, G3 = G1 · G2 − G1,

G5 = G3 · G2 − G1 − 2G3, G4 = G5 · G2, G6 = G5 · G4 − G2.

Essential matrices ofE7 have 7 columns and 17 rows. They are labelled by vertices
of diagramsE7 andA17. The first essential matrixE0 is given below, together with the
corresponding induction–restriction graph. To obtain the toric matrices, we also need to
know the essential matrices for theD10 case. They are obtained as usual (we also display
the essential matrixE0 of theD10 case) (Fig. 22).

We form the tensor productD10 ⊗ D10, and identifyau⊗ b with a ⊗ ρ(u)b, where

ρ(0) = 0, ρ(2) = 8, ρ(4) = 4, ρ(6) = 6, ρ(8) = 2, ρ(8′) = 8′.

The Ocneanu algebra ofE7 can be realized as

HOc(E7) = D10⊗̇D10
·=D10 ⊗ D10

ρ
.

Table 7
Multiplication table of the graph algebraE7



R. Coquereaux, G. Schieber / Journal of Geometry and Physics 42 (2002) 216–258 247

Fig. 22. Essential matrixE0 and essential paths from the vertex 0 for theE7-model.

It is spanned by a basis with 17 elements

0 = 0⊗̇0, (0) = 0⊗̇1,

1 = 1⊗̇0, (1) = 1⊗̇1,

2 = 2⊗̇0 = 0⊗̇8, (2) = 2⊗̇1 = 0⊗̇7,

3 = 3⊗̇0, (3) = 3⊗̇1 = 1⊗̇3,

4 = 4⊗̇0 = 0⊗̇4, (4) = 0⊗̇3,

5 = 5⊗̇0, (5) = 5⊗̇1 − 3⊗̇1,

6 = 6⊗̇0 = 0⊗̇6, = 1⊗̇5 − 1⊗̇3,

7 = 7⊗̇0, (6) = 0⊗̇5,

8 = 8⊗̇0 = 0⊗̇2,

8′ = 8′⊗̇0 = 0⊗̇8′.

1and(0) are respectively the left and right generators. The ambichiral part is the linear span
of {0,2,4,6,8,8′}. The multiplication of the elements of this algebra by the generators is
shown in the following table. We can observe on the Ocneanu graph Oc(E7) thatE7 does not
appear as a subalgebra ofHOc(E7) but as a quotient (there are two such quotients) (Fig. 23).

The 17 toric matricesWab of theE7 model are obtained as explained in Section 2.2.5,
but with a twist. We use the essential matricesEa(D10), and replace the matrix elements of
the columns associated with vertices 1,3,5,7 of the graphD10 by 0; this being done, we
permute the columns associated with vertices 2 and 8 ofD10 (with our ordering, these are
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Fig. 23. Essential matrixE0 for D10.

Table 8
Multiplication of the elements of the Ocneanu algebra ofE7 by the generators
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columns 3 and 9). The reduced and twisted matrix so obtained is calledE
ρ
a (D10). The 17

toric matrices of theE7 model are then obtained by setting:

W [a, b]
·=Ea(D10) · ˜(E

ρ
b (D10)).

For instanceW(5) = W [5,1]−W [3,1] = E5(D10)· ˜(E
ρ
1 (D10))−E3(D10)· ˜(E

ρ
1 (D10)). We

recall the matrix expression of the modular invariantW00 and give the others as sesquilinears
forms in the appendix (Table 8).

W00 =




1 · · · · · · · · · · · · · · · 1

· · · · · · · · · · · · · · · · ·
· · · · · · · · 1 · · · · · · · ·
· · · · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · · · ·
· · · · · · 1 · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · ·
· · 1 · · · · · 1 · · · · · 1 · ·
· · · · · · · · · · · · · · · · ·
· · · · · · 1 · · · 1 · · · · · ·
· · · · · · · · · · · · · · · · ·
· · · · 1 · · · · · · · 1 · · · ·
· · · · · · · · · · · · · · · · ·
· · · · · · · · 1 · · · · · · · ·
· · · · · · · · · · · · · · · · ·
1 · · · · · · · · · · · · · · · 1




.

We conclude this section with the determination of the integersdn anddx .
The integersdn associated with endomorphisms of essential paths on the graphE7 are

determined easily by the usual method. Forn = 1,2, . . . ,17 one finds

dn = 7,12,17,22,27,30,33,34,35,34,33,30,27,22,17,12,7.

In order to determine the integersdx , we need to know the multiplication table defined
by the Ocneanu graph Oc(E7). The full table ofHOc(E7) has the following structure:
“D10” × “D10” → “D10”, “D10” × “E7” → “E7”, and “E7” × “E7” → “D10”, where “D10”
is the subalgebra linearly spanned by 0,1, . . . ,8,8′ and “E7” is the linear subspace linearly
spanned by(0), (1), . . . , (6). Actually, it is enough, four our purpose, to know the smaller
table obtained by restriction to theE7 quotients, i.e., the “E7” × “E7” → “D10” table.

We encode this multiplication table by a set of 10 matricessp (labelled byD10, of size
7 × 7 (labelled byE7)). The result of a given multiplication, such as(4) × (5) = 3 + 7
is indicated by the presence of the integer 1 in position(4,5) in both matricess3 ands7
(Fig. 24).
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Fig. 24. Ocneanu graphE7.

Since we have an explicit realization ofHOc(E7), it is not too difficult to find

s0 =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




, s1 =




0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 1

0 0 0 1 0 0 0

0 0 0 0 0 0 1

0 0 0 1 0 1 0




,

s2 =




0 0 1 0 0 0 0

0 1 0 1 0 0 0

1 0 1 0 1 0 1

0 1 0 2 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 1 0 1 0 1




, s3 =




0 0 0 1 0 0 0

0 0 1 0 1 0 1

0 1 0 2 0 1 0

1 0 2 0 1 0 2

0 1 0 1 0 1 0

0 0 1 0 1 0 0

0 1 0 2 0 0 0




,
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s4 =




0 0 0 0 1 0 1

0 0 0 2 0 1 0

0 0 2 0 1 0 2

0 2 0 3 0 1 0

1 0 1 0 1 0 1

0 1 0 1 0 0 0

1 0 2 0 1 0 1



, s5 =




0 0 0 1 0 1 0

0 0 1 0 1 0 2

0 1 0 3 0 1 0

1 0 3 0 2 0 2

0 1 0 2 0 0 0

1 0 1 0 0 0 1

0 2 0 2 0 1 0



,

s6 =




0 0 1 0 0 0 1

0 1 0 2 0 1 0

1 0 2 0 2 0 2

0 2 0 4 0 1 0

0 0 2 0 1 0 1

0 1 0 1 0 1 0

1 0 2 0 1 0 2



, s7 =




0 1 0 1 0 0 0

1 0 2 0 1 0 1

0 2 0 3 0 1 0

1 0 3 0 2 0 3

0 1 0 2 0 1 0

0 0 1 0 1 0 1

0 1 0 3 0 1 0



,

s8 =




1 0 0 0 1 0 0

0 1 0 1 0 0 0

0 0 2 0 0 0 1

0 1 0 2 0 1 0

1 0 0 0 1 0 1

0 0 0 1 0 0 0

0 0 1 0 1 0 1



, s8′ =




0 0 1 0 0 0 0

0 1 0 1 0 0 0

1 0 1 0 1 0 1

0 1 0 2 0 1 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 1 0 1 0 1



.

The sum of matrix elements of the 10 matricessp, for p = 0,1,2, . . . ,8,8′ is 7,12,17,
22,27,30,33,34,18,17, respectively.

To each linear generatorx = ∑
a ⊗ b (for instance(5) = 5⊗̇1 − 3⊗̇1) of the Oc-

neanu algebra ofE7 (the basis with 17 elements was given previously), we associate
a matrixΣx = ∑

sasb (for instanceΣ(5) = s5s1 − s3s1). The integerdx is the sum
of matrix elements of the matrixΣx (for instanced(5) = 16). In particular, thedx as-
sociated with the “D10” part of the graph are just given by sum of matrix elements of
matricessp.

The final list of integersdx , associated with blocks 0,1, . . . ,8,8′; (0), (1), . . . , (6) is

dx = 7,12,17,22,27,30,33,34,18,17,12,24,34,44,22,16,30.

Note that
∑

dn = ∑
dx = 399 and that

∑
d2
n = ∑

d2
x = 10905.

The above results agree6 with those obtained by [22].

6 The preprint version of [22], available on the web, contains a typing misprint: the last values ofdx should be
read 44,30,16,22 and not 442,30,16,22.
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Appendix A. The general notion of essential paths on a graph G

The general definitions given here are adapted from [16].
Callβ the norm of the graphG (the biggest eigenvalue of the adjacency matrixG) andDi

the components of the (normalized) Perron–Frobenius eigenvector. Callσi the vertices of
G and, ifσj is a neighbour ofσi , call ξij the oriented edge fromσi to σj . If G is unoriented
(the case for ADE and affine ADE diagrams), each edge should be considered as carrying
both orientations.

An elementary path can be written either as a finite sequence of consecutive (neighbours
on the graph) vertices, [σa1σa2σa3 . . . ], or as a sequence(ξ(1)ξ(2) . . . )of consecutive edges,
with ξ(1) = ξa1a2 = σa1σa2, ξ(2) = ξa2a3 = σa2σa3, etc. Vertices are considered as paths
of length 0.

The length of the (possibly backtracking) path(ξ(1)ξ(2) . . . ξ(p)) isp. We callr(ξij ) =
σj , the range ofξij ands(ξij ) = σi , the source ofξij .

For all edgesξ(n + 1) = ξij that appear in an elementary path, we setξ(n + 1)−1=·ξ ji .
For every integern > 0, the annihilation operatorCn, acting on elementary paths of

lengthp is defined as follows: ifp ≤ n, Cn vanishes and ifp ≥ n + 1 then

Cn(ξ(1)ξ(2) . . . ξ(n)ξ(n + 1) . . . )

=
√
Dr(ξ(n))

Ds(ξ(n))

δξ(n),ξ(n+1)−1(ξ(1)ξ(2) . . . ξ̂ (n)ξ̂ (n + 1) . . . ).

Here, the symbol “hat” (like in̂ξ ) denotes omission. The result is therefore either 0 or a
linear combination of paths of lengthp−2. Intuitively,Cn chops the round trip that possibly
appears at positionsn, n + 1.

A path is called essential if it belongs to the intersection of the kernels of the annihilators
Cn’s.

For instance, in the case of the diagramE6,

C3(ξ01ξ12ξ23ξ32) =
√

1

[2]
(ξ01ξ12), C3(ξ01ξ12ξ25ξ52) =

√
[2]

[3]
(ξ01ξ12).

The following difference of non-essential paths of length 4 starting atσ0 and ending at
σ2 is an essential path of length 4 onE6:

√
[2](ξ01ξ12ξ23ξ32) −

√
[3]

[2]
(ξ01ξ12ξ25ξ52) =

√
[2][0,1,2,3,2] −

√
[3]

[2]
[0,1,2,5,2].

Here the values of q-numbers are [2]= √
2/(

√
3 − 1) and [3]= 2/(

√
3 − 1).
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Acting on an elementary path of lengthp, the creating operatorsC†
n are defined as

follows: if n > p + 1,C†
n vanishes and, ifn ≤ p + 1 then, settingj = r(ξ(n − 1)),

C†
n (ξ(1) . . . ξ(n − 1) . . . ) =

∑
d(j,k)=1

√(
Dk

Dj

)
(ξ(1) . . . ξ(n − 1)ξjkξkj . . . ).

The above sum is taken over the neighboursσk of σj on the graph. Intuitively, this operator
adds one (or several) small round trip(s) at positionn. The result is therefore either 0 or a
linear combination of paths of lengthp + 2.

For instance, on paths of length 0 (i.e., vertices),

C
†
1 (σj ) =

∑
d(j,k)=1

√(
Dk

Dj

)
ξjkξkj =

∑
d(j,k)=1

√(
Dk

Dj

)
[σjσkσj ].

Jones’ projectorsek can be defined (as endomorphisms of Pathp) by

ek
·= 1

β
C

†
k Ck.

The reader can check that all Jones–Temperley–Lieb relations between theei are satisfied.
Essential paths can also be defined as elements of the intersection of the kernels of the Jones
projectorsei ’s.

Appendix B. Twisted partition functions for the ADE models

Twisted partition functions for theA4 model

Point Z

0 |χ0|2+|χ1|2+|χ2|2+|χ3|2
1 [(χ0χ1 + χ1χ2 + χ2χ3) + h.c.]
2 |χ1|2 + |χ2|2 + [(χ0χ2 + χ1χ3) + h.c.]
3 [(χ0χ3 + χ1χ2) + h.c.]

Twisted partition functions for theE6 model

Point Z

0 |χ0 + χ6|2 + |χ3 + χ7|2 + |χ4 + χ10|2
3 (χ0 + χ4 + χ6 + χ10) · (χ3 + χ7) + h.c.
4 |χ3 + χ7|2 + [(χ0 + χ6) · (χ4 + χ10) + h.c.]
11′ |χ1 + χ5 + χ7|2 + |χ2 + χ4 + χ6 + χ8|2 + |χ3 + χ5 + χ9|2
21′ (χ1 + χ3 + 2(χ5) + χ7 + χ9) · (χ2 + χ4 + χ6 + χ8) + h.c.
51′ |χ2 + χ4 + χ6 + χ8|2 + 2|χ5|2 + ([(χ1 + χ7) · (χ3 + χ5 + χ9) + χ3χ5 + χ5χ9]

+ h.c.)
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Appendix B (Continued)

Point Z

1 (χ0 + χ6) · (χ1 + χ5 + χ7) + (χ3 + χ7) · (χ2 + χ4 + χ6 + χ8) + (χ4 + χ10)

· (χ3 + χ5 + χ9)

1′ h.c.(Z1)

2 |χ3 + χ7|2 + |χ4 + χ6|2 + (χ0 + χ10) · (χ2 + χ4 + χ6 + χ8) + (χ3 + χ7)

· (χ1 + 2(χ5) + χ9) + (χ4 + χ6) · (χ2 + χ8)

31′ h.c.(Z2)

5 (χ0 + χ6) · (χ3 + χ5 + χ9) + (χ3 + χ7) · (χ2 + χ4 + χ6 + χ8) + (χ4 + χ10)

· (χ1 + χ5 + χ7)

41′ h.c.(Z5)

Twisted partition functions for theE8 model (part 1)

Point Z

0 |χ0 + χ10 + χ18 + χ28|2 + |χ6| + χ12 + χ16 + χ22|2
6 |χ0 + χ6 + χ12 + χ16 + χ22 + χ28|2 − |χ0 + χ28|2 + [(χ6 + χ12 + χ16 + χ22)

· (χ10 + χ18) + h.c.]
11′ |χ1 + χ9 + χ11 + χ17 + χ19 + χ27|2 + |χ5 + χ7 + χ11 + χ13 + χ15 + χ17

+ χ21 + χ23

71′ |χ1 + χ5 + χ7 + χ11 + χ13 + χ15 + χ17 + χ21 + χ23 + χ27|2 + |χ9 + χ11 + χ13
+ χ15 + χ17 + χ19|2 − |χ1 + χ27|2 + |χ11 + χ17|2 − |χ13 + χ15|2 − |χ9 + χ19|2
+ [(χ5 + χ7 + χ21 + χ23) · (χ9 + χ11 + χ17 + χ19) + h.c.]

22′ |χ2 + χ26|2 + |∑12
i=2(χ2i )|2 + |∑10

i=4(χ2i )|2 + 2|χ14|2 + [((χ2 + χ26)
· (χ8 + χ10 + χ12 + χ16 + χ18 + χ20) + (χ4 + χ6 + χ22 + χ24) · (χ14)) + h.c.]

42′ |∑13
i=1(χ2i )|2−|χ2+χ24|2+|∑12

i=2(χ2i )|2−|χ4+χ6+χ22+χ24|2+|∑10
i=4(χ2i )|2

+ [(χ2 +∑10
i=4(χ2i ) + χ26) · χ14 + h.c.]

55′ |χ5 + χ9 + χ13 + χ15 + χ19 + χ23 + |χ3 +∑10
i=3(χ2i+1) + χ25|2

35′ |∑12
i=1(χ2i+1)|2 + |∑10

i=3(χ2i+1)|2 + |χ9 +χ13 +χ15 +χ19|2 − |χ7 +χ11 +χ17

+ χ21|2 − |χ5 + χ23| + [(χ3 + χ25) · (χ9 + χ13 + χ15 + χ19) + h.c.]
1 (χ0 + χ10 + χ18 + χ28) · (χ1 + χ9 + χ11 + χ17 + χ19 + χ27)+ (χ6 + χ12 + χ16

+ χ22) · (χ5 + χ7 + χ11 + χ13 + χ15 + χ17 + χ21 + χ23)
1′ h.c.(Z1)

2 |χ6+χ12+χ16+χ22|2+(χ0+χ10+χ18+χ28) ·(χ2+χ8+χ10+χ12+χ16+χ18
+χ20+χ26)+(χ6+χ12+χ16+χ22) ·(χ4+χ8+χ10+2(χ14)+χ18+χ20+χ24)

2′ h.c.(Z2)

3 (χ0 + χ10 + χ18 + χ28) · (χ3 +∑10
i=3(χ2i+1) + χ25) + (χ6 + χ12 + χ16 + χ22)

· (∑12
i=1(χ2i+1) + χ9 + χ13 + χ15 + χ19)

65′ h.c.(Z3)

4 |χ6 + χ10 + χ12 + χ16 + χ18 + χ22|2 + |χ12 + χ16|2 + (χ6 + χ22) · (χ12 + χ16)
+ (χ0 + χ10 + χ18 + χ28) · (χ4 + χ8 + 2(χ14) + χ20 + χ24) + (χ0 + χ28) · (χ6
+ χ10 + χ12 + χ16 + χ18 + χ22) + (χ6 + χ12 + χ16 + χ22) · (χ2 + χ4 + 2(χ8)
+ χ10 + 2(χ14) + χ18 + 2(χ20) + χ24 + χ26)

62′ h.c.(Z4)
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Twisted partition functions for theE8 model (part 2)

Point Z

5 (χ0 + χ10 + χ18 + χ28) · (χ5 + χ9 + χ13 + χ15 + χ19 + χ23)+ (χ6 + χ12 + χ16
+ χ22) · (χ3 +∑10

i=3(χ2i+1) + χ25)

5′ h.c.(Z5)

7 (χ0 + χ10 + χ18 + χ28) · (χ5 + χ7 + χ11 + χ13 + χ15 + χ17 + χ21 + χ23)+ (χ6
+ χ12 + χ16 + χ22) · (χ1 +∑11

i=2(χ2i+1) + χ11 + χ17 + χ27)

61′ h.c.(Z7)

21′ (χ1 + χ9 + χ11 + χ17 + χ19 + χ27) · (χ2 + χ8 + χ10 + χ12 + χ16 + χ18 + χ20
+ χ26) + (χ5 + χ7 + χ11 + χ13 + χ15 + χ17 + χ21 + χ23) · (∑12

i=2(χ2i ) + χ14)

12′ h.c.(Z21′)

41′ (χ1 + χ9 + χ11 + χ17 + χ19 + χ27) · (∑12
i=2(χ2i )+ χ14)+ (χ5 + χ7 + χ11 + χ13

+ χ15 + χ17 + χ21 + χ23) · (∑13
i=1(χ2i ) +∑10

i=4(χ2i ))

72′ h.c.(Z41′)

52′ (χ2 + χ8 + χ10 + χ12 + χ16 + χ18 + χ20 + χ26) · (χ5 + χ9 + χ13 + χ15 + χ19
+ χ23) + (

∑12
i=2(χ2i ) + χ14) · (χ3 +∑10

i=3(χ2i+1) + χ25)

25′ h.c.(Z52′)

32′ (χ2 + χ8 + χ10 + χ12 + χ16 + χ18 + χ20 + χ26) · (χ3 +∑10
i=3(χ2i+1) + χ25)

+ (
∑12

i=2(χ2i ) + χ14) · (∑12
i=1(χ2i+1) + χ9 + χ13 + χ15 + χ19)

45′ h.c.(Z32′)

51′ (χ1 + χ9 + χ11 + χ17 + χ19 + χ27) · (χ5 + χ9 + χ13 + χ15 + χ19 + χ23)

+ (χ5 + χ7 + χ11 + χ13 + χ15 + χ17 + χ21 + χ23) · (χ3 +∑10
i=3(χ2i+1)+ χ25)

15′ h.c.(Z51′)

31′ |∑11
i=2(χ2i+1)|2 + (χ1 + χ11 + χ17 + χ27) · (χ3 +∑10

i=3(χ2i+1) + χ25)

+ (χ9 + χ19) · (χ3 − χ5 − χ23 + χ25)(χ5 + χ7 + χ11 + χ13 + χ15 + χ17
+ χ21 + χ23) · (χ3 + χ9 + χ13 + χ15 + χ19 + χ25)

75′ h.c.(Z31′)

Twisted partition functions for theD4 model

Point Z

0 |χ0 + χ4 + 2|χ2|2
2,2′ |χ2|2 + [(χ0 + χ4) · χ2 + h.c.]

ε,2ε,2′ε |χ1 + χ3|2
1 (χ0 + 2(χ2) + χ4) · (χ1 + χ3)

1ε h.c.(Z1)
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Appendix B (Continued)

Twisted partition functions for theD6 model

Point Z

0 |χ0 + χ8|2 + |χ2 + χ6|2 + 2|χ4|2
2 |χ2 + χ6|2 + 2|χ4|2 + [(χ0 + 2(χ4) + χ8) · (χ2 + χ6) + h.c.]
4,4′ |χ2 + χ4 + χ6|2 + [(χ0 + χ8) · χ4) + h.c.]
ε |χ1 + χ7|2 + |χ3 + χ5|2
2ε |χ1 + χ3 + χ5 + χ7|2 + |χ3 + χ5|2
4ε,4′ε |χ1 + χ3 + χ5 + χ7|2 − |χ1 + χ7|2
1 (χ0 + χ2 + χ6 + χ8) · (χ1 + χ7) + (χ2 + 2(χ4) + χ6) · (χ3 + χ5)

1ε h.c.(Z1)

3 (χ0 + χ2 + χ6 + χ8) · (χ3 + χ5) + (χ2 + 2(χ4) + χ6) · (χ1 + χ3 + χ5 + χ7)

3ε h.c.(Z3)

Twisted partition functions for theD5 model

Point Z

0 |χ0|2 + |χ2|2 + |χ3|2 + |χ4|2 + |χ6|2 + (χ1χ5 + h.c.)
2 |χ2 + χ4|2 + |χ3|2 + [(χ0χ2 + χ1χ3 + χ1χ5 + χ3χ5 + χ4χ6) + h.c.]
3 [(χ0 + χ2 + χ4 + χ6) · χ3 + (χ1 + χ5) · (χ2 + χ4) + h.c.]
4 |χ1|2 + |χ3|2 + |χ5|2 + |χ2 + χ4|2 + [(χ0χ4 + χ1χ3 + χ2χ6 + χ3χ5) + h.c.]
6 |χ1|2 + |χ3|2 + |χ5|2 + [(χ0χ6 + χ2χ4) + h.c.]
1 (χ0 + χ2) · χ1 + χ5 · (χ0 + χ2) + χ1 · (χ4 + χ6) + (χ4 + χ6) · χ5

+ [(χ2χ3 + χ3χ4) + h.c.]
5 h.c.(Z1)

Twisted partition functions for theD7 model

Point Z

0 |χ0|2 + |χ2|2 + |χ4|2 + |χ5|2 + |χ6|2 + |χ8|2 + |χ10|2 + [(χ1χ9 + χ3χ7)+ h.c.]
2 |χ2 +χ4|2 + |χ5|2 + |χ6 +χ8|2 + [(χ0χ2 + (χ1 +χ3) · (χ7 +χ9)+χ3χ5 +χ4χ6

+ χ5χ7 + χ810) + h.c.]
4 |χ2 + χ4 + χ6 + χ8|2 + |χ3 + χ5 + χ7|2 + [χ0χ4 + χ1 · (χ5 + χ7) − χ2χ8

+ (χ3 + χ5) · χ9 + χ6χ10) + h.c.]
5 [(χ0 + χ2 + χ4 + χ6 + χ8 + χ10) · χ5 + (χ1 + χ3 + χ7 + χ9) · (χ4 + χ6)

+ (χ2 + χ8) · (χ3 + χ7) + h.c.]
6 |χ2 + χ4 + χ6 + χ8|2 + |χ3 + χ5 + χ7|2 − |χ2|2 − |χ8|2 + [(χ0χ6 + χ1

· (χ3 + χ5) + χ4χ10 + (χ5 + χ7) · χ9) + h.c.]
8 |χ1 + χ3|2 + |χ4 + χ6|2 + χ7 + χ9|2 + |χ5|2 + [(χ0χ8 + χ2 · (χ6 + χ8 + χ10)

+ χ3χ5 + χ4χ8 + χ5χ7) + h.c.]
10 |χ1|2 + |χ3|2 + |χ5|2 + |χ7|2 + |χ9|2 + [(χ0χ10 + χ2χ8 + χ4χ6) + h.c.]
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Point Z

1 (χ0 + χ2) · χ1 + χ9 · (χ0 + χ2) + (χ2 + χ4) · χ3 + χ7 · (χ2 + χ4) + (χ6 + χ8)

· χ7 + χ3 · (χ6 + χ8)+ (χ8 + χ10) · χ9 + χ1 · (χ8 + χ10)+ [(χ4 + χ6) · χ5 + h.c.]
9 h.c.(Z1)

3 χ7 · (χ0 + χ2) + (χ2 + χ4) · χ1 + χ9 · (χ2 + χ4) + (χ0 + χ2) · χ3 + χ1
· (χ6 + χ8) + (χ8 + χ10) · χ7 + χ3 · (χ8 + χ10) + (χ6 + χ8) · χ9
+ [(χ2 + χ4 + χ6 + χ8) · χ5 + (χ3 + χ7) · (χ4 + χ6) + h.c.]

7 h.c.(Z3)

Twisted partition functions for theE7 model

Point Z

0 |χ0 + χ16|2 + |χ4 + χ12|2 + |χ6 + χ10|2 + |χ8|2 + [(χ2 + χ14) · χ8 + h.c.]
2 |χ4 + χ6 + χ8 + χ10 + χ12 − (χ4 + χ12) · χ8 + χ8 · (χ0 + χ16)+ (χ0 + χ4 + χ8

+ χ12 + χ16) · (χ2 + χ14) + (χ2 + χ14) · (χ6 + χ8 + χ10) + (χ6 + χ10) · χ8

4 |χ2 + χ4 + χ6 + χ8 + χ10 + χ12 + χ14|2 − |χ2 + χ14|2 + |χ6 + χ8 + χ10|2
− |χ8|2 + [(χ0 + χ8 + χ16) · (χ4 + χ12) + h.c.]

6 |χ2 + χ4 + χ6 + χ8 + χ10 + χ12 + χ14|2 + |χ4 + χ6 + χ8 + χ10 + χ12|2
− |χ4 + χ12|2 + |χ8|2 + [(χ0 + χ16) · (χ6 + χ12) + h.c.]

8 |χ4 + χ6 + χ8 + χ10 + χ12|2 − χ8 · (χ4 + χ12) + (χ2 + χ14) · (χ0 + χ4 + χ8
+ χ12 + χ16)+ (χ6 + χ8 + χ10) · (χ2 + χ14)+ (χ0 + χ16) · χ8 + χ8 · (χ6 + χ10)

8′ |χ2 + χ6 + χ10 + χ14|2 − |χ6 + χ10|2 + |χ4 + χ6 + χ8 + χ10 + χ12|2 + |χ8|2
+ [(χ0 + χ16) · χ8 + h.c.]

(1) |χ1 + χ7 + χ9 + χ15|2 + |χ3 + χ5 + χ7 + χ9 + χ11 + χ13|2 + |χ5 + χ11|2
(3) |∑7

i=0(χ2i+1)|2 + |∑6
i=1(χ2i+1)|2 + |∑5

i=2(χ2i+1)|2 − |χ1 + χ15|2
− |χ3 + χ13|2 − χ5 + χ11|2

(5) |χ3 + χ7 + χ9 + χ13|2 + |χ5 + χ7 + χ9 + χ11|2 − |χ7 + χ9|2 + [(χ1 + χ15)

· (χ5 + χ11) + h.c.]
1 (χ0 + χ8 + χ16) · (χ1 + χ15) + (χ4 + χ8 + χ12) · (χ3 + χ13) + (χ4 + χ6 + χ10

+ χ12) · (χ5 + χ11) + (χ2 + χ6 + χ8 + χ10 + χ14) · (χ7 + χ9)

(0) h.c.(Z1)

7 (χ2+χ6+χ8+χ10+χ14)·(
∑7

i=0(χ2i+1))+(χ4+χ6+χ10+χ12)·(
∑6

i=1(χ2i+1))

+ (χ4 + χ8 + χ12) · (χ5 + χ7 + χ9 + χ11) + (χ0 + χ8 + χ16) · (χ7 + χ9)

(2) h.c.(Z7)

3 (χ4 + χ8 + χ12) · (∑7
i=0(χ2i+1)) + (χ0 + χ6 + χ10 + χ16) · (χ3 + χ12) + (χ2

+χ6+χ10+χ14) · (χ5+χ7+χ9+χ11)+ (χ6+χ10) · (χ7+χ9)+χ8 · (χ5+χ11)

(4) h.c.(Z3)

5 (χ4 + χ6 + χ10 + χ12) · (∑7
i=0(χ2i+1)) + (χ2 + 2(χ8) + χ14) · (∑6

i=1(χ2i+1))

+ (χ0 + χ6 + χ10 + χ16) · (χ5 + χ11) + (χ4 + χ6 + χ10 + χ12) · (χ7 + χ9)

(6) h.c.(Z5)



258 R. Coquereaux, G. Schieber / Journal of Geometry and Physics 42 (2002) 216–258

References

[1] W. Connet, M.-O. Gebuher, A.L. Schwartz (Eds.), Applications of hypergroups and related measure algebras,
in: Proceedings of the Seattle Conference, Vol. 183, AMS Contemporary Mathematics, 1993.

[2] J. Böckenhauer, D. Evans, Modular invariants, graphs andα induction for nets of subfactors II, Commun.
Math. Phys. 200 (1990) 57–103.

[3] J. Böckenhauer, D. Evans, Modular invariants from subfactors, in: R. Coquereaux, A. Garcia, R. Trinchero
(Eds.), D. Evans Lectures at Bariloche Summer School, Argentina, January 2000, AMS Contemporary
Mathematics, in press.

[4] A. Cappelli, C. Itzykson, J.B. Zuber, The ADE classification of minimal andA
(1)
1 conformal invariant theories,

Commun. Math. Phys. 13 (1987) 1.
[5] C.H. Otto Chui, C. Mercat, W. Orrick, P.A. Pearce, Integrable Lattice Realizations of Conformal Twisted

Boundary Conditions. hep-th/0106182.
[6] R. Coquereaux, Notes on the quantum tetrahedron, Moscow Math. J., in press. math-ph/0011006.
[7] R. Coquereaux, Classical and quantum polyhedra: a fusion graph algebra point of view, Lectures given at the

Karpacz Winter School, February 2001. hep-th/0105239.
[8] R. Coquereaux, A. Garcia, R. Trinchero, Racah–Wigner bi-algebras and Ocneanu quantum symmetries, in

preparation.
[9] A. Coste, T. Gannon, Congruence subgroups and rational conformal field theory. math.QA/9909080.

[10] P. Di Francesco, P. Matthieu, D. Senechal, Conformal Field Theory, Springer, Berlin, 1997.
[11] F.M. Goodman, P. de la Harpe, V.F.R Jones, Coxeter Graphs and Towers of Algebras, MSRI Publications,

Vol. 14, Springer, Berlin, 1989.
[12] V.F.R. Jones, Planar algebras, V.F.R Jones home page.
[13] A. Kirillov, V. Ostrik, On q-analog of McKay correspondence and ADE classification of SL2 conformal field

theories. math.QA/0101219.
[14] F. Klein, Lectures on the Icosahedron and the solution of the equation of the fifth degree, Reprog. Nachdr. d.

Ausg. Leipzig (1884), Vol. IX, Teubner/Dover, New York, p. 289, 1956.
[15] J. McKay, Graphs, singularities and finite groups, Proc. Symp. Pure Math. 37 (1980) 183.
[16] A. Ocneanu, in: R. Bhat et al. (Eds.), Paths on Coxeter Diagrams: from Platonic Solids and Singularities

to Minimal Models and Subfactors, Notes Taken by S. Goto, Fields Institute Monographs, American
Mathematical Sciences, 1999.

[17] A. Ocneanu, Higher Coxeter systems, Talk given at MSRI. http://www.msri.org/publications/ln/msri/2000/
subfactors/ocneanu.

[18] A. Ocneanu, Paths on Coxeter diagrams: from platonic solids and singularities to minimal models and
subfactors, Talks Given at the Centre de Physique Théorique, Luminy, Marseille, 1995.

[19] V. Pasquier, Operator contents of the ADE lattice models, J. Phys. A 20 (1987) 5707.
[20] V.B. Petkova, J.B. Zuber, BCFT: from the boundary to the bulk, in: Proceedings of the Nonperturbative

Quantum Effects 2000. hep-th/0009219.
[21] V.B. Petkova, J.B. Zuber, Generalized twisted partition functions, Phys. Lett. B 504 (1–2) (2001) 157.

hep-th/0011021.
[22] V.B. Petkova, J.B. Zuber, The many faces of Ocneanu cells, Nucl. Phys. B 603 (2001) 449. hep-th/0101151.
[23] P.A. Pearce, Y. Zhou, Intertwiners and A–D–E lattice models, IJM Phys B 7 (20–21) (1993) 3469.

hep-th/9304009.
[24] Ph. Roche, Ocneanu cell calculus and integrable lattice models, Commun. Math. Phys. 127 (1990) 395.
[25] J.B. Zuber, CFT, BCFT, ADE and all that, Lectures at Bariloche Summer School, Argentina, January 2000;

R. Coquereaux, A. Garcia, R. Trinchero (Eds.), AMS Contemporary Mathematics, in press. hep-th/0006151.


	Twisted partition functions for ADE boundary conformal field theories and Ocneanu algebras of quantum symmetries
	Introduction
	Summary of the algebraic constructions
	Foreword
	Structure of the following sections
	The diagram (ADE) and its adjacency matrix
	The graph algebra of the Dynkin diagram and the quantum table of characters
	Essential matrices and paths
	Dimensions of blocks for the Racah-Wigner-Ocneanu bi-algebras
	The Ocneanu graph corresponding to a Dynkin diagram and its algebra
	Modular invariant partition functions and twisted partition functions
	Summary of notations


	The An cases
	A4
	An

	The E6 case
	The E8 case
	The Deven case
	The D4 case
	The D6 case
	The Deven case

	The Dodd case
	The D5 case
	The D7 case

	The E7 case
	Acknowledgements
	The general notion of essential paths on a graph G

	Twisted partition functions for the ADE models

	References

